An isomorphic Dvoretzky-Milman Theorem using general random ensembles

نویسندگان

چکیده

We construct rather general random ensembles that yield the optimal (isomorphic) estimate in Dvoretzky-Milman Theorem. This is first construction of non gaussian/spherical exhibit behaviour. The constructed here need not satisfy any rotation invariance and can be heavy-tailed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randomized Isomorphic Dvoretzky Theorem

Let K be a symmetric convex body in IR for which B 2 is the ellipsoid of minimal volume. We provide estimates for the geometric distance of a “typical” rank n projection of K to B 2 , for 1 ≤ n < N . Known examples show that the resulting estimates are optimal (up to numerical constants) even for the Banach–Mazur distance. Résumé French title here Soit K un corps convexe symétrique de IR dont l...

متن کامل

AN \ ISOMORPHIC " VERSION OF DVORETZKY ' S THEOREM , IIby

A diierent proof is given to the result announced in MS2]: For each 1 k < n we give an upper bound on the minimal distance of a k-dimensional subspace of an arbitrary n-dimensional normed space to the Hilbert space of dimension k. The result is best possible up to a multiplicative universal constant. Our main result is the following extension of Dvoretzky's theorem (from the range 1 < k < c log...

متن کامل

An “Isomorphic” Version of Dvoretzky’s Theorem, II

A different proof is given to the result announced in [MS2]: For each 1 ≤ k < n we give an upper bound on the minimal distance of a k-dimensional subspace of an arbitrary n-dimensional normed space to the Hilbert space of dimension k. The result is best possible up to a multiplicative universal constant. Our main result is the following extension of Dvoretzky’s theorem (from the range 1 < k < c...

متن کامل

A cone theoretic Krein-Milman theorem in semitopological cones

In this paper, a Krein-Milman  type theorem in $T_0$ semitopological cone is proved,  in general. In fact, it is shown that in any locally convex $T_0$ semitopological cone, every convex compact saturated subset is the compact saturated convex hull of its extreme points, which improves the results of Larrecq.

متن کامل

Scale-oblivious Metric Fragmentation and the Nonlinear Dvoretzky Theorem

We introduce a randomized iterative fragmentation procedure for finite metric spaces, which is guaranteed to result in a polynomially large subset that is D-equivalent to an ultrametric, where D ∈ (2,∞) is a prescribed target distortion. Since this procedure works for D arbitrarily close to the nonlinear Dvoretzky phase transition at distortion 2, we thus obtain a much simpler probabilistic pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2022

ISSN: ['0022-1236', '1096-0783']

DOI: https://doi.org/10.1016/j.jfa.2022.109473